An Analysis of Long Baseline Radio Interferometry
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Tracking and Orbit Determination Section

The VLBI (very long baseline interferometer) cross-correlation procedure is
analyzed for both a natural point source and a completely incoherent extended
source. The analysis is based on a plane wave description of a radio signal that
consists of stationary random noise. A formulation of the time delay is developed
on the basis of plane wave phase. A brief discussion is devoted to small time delay
corrections that are generated by relativistic differences in clock rates in the various
coordinate frames. The correlation analysis, which includes electronic factors such
as amplitude and phase modulation and the heterodyne process, leads to expres-
sions for fringe amplitude and fringe phase. It is shown that the cross-correlation
function for an extended source is identical to the point-source expression if one
adjusts the fringe amplitude to include the transform of the brightness distribution.
Examples of diurnal paths in the u-v plane are presented for various baselines and
source locations. Finally, delay and delay rate measurement accuracy is briefly

discussed.

l. Introduction

In very long baseline interferometer (VLBI) measure-
ments, the radio signal produced by a distant source is
recorded simultaneously at two radio antennas. Because of
a difference in raypaths, the signal will be delayed in time
at one antenna relative to the other. By cross-correlating
the two signals, the time delay and/or its time derivative
may be determined. In addition, correlated amplitude
measurements can yield source strength and structure.
If the radio signal is generated by an extragalactic object,
the radio source may be regarded as a fixed object be-
cause of its great distance. In this case, the time depen-
dence of the time delay is generated by the Earth’s motion
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but depends, of course, on the source location and the
baseline vector between the two antennas. In general,
measurement of the time delay and/or its derivative for
many sources can lead to a least-squares determination of
source locations, the baseline vector, and Earth motion
parameters, such as UT1 and polar motion.

The goal of this report is a systematic analysis that in-
cludes the most important features of analog VLBI cross-
correlation. The correlation analysis is presented for both
a point source and a completely incoherent extended
source. The analysis differs from previous work (Refs. 1-5)
in several ways. First, the derivation is based on a plane
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wave description of the radio noise. This approach allows
the time delay and the brightness transform to enter the
cross-correlation equations in a natural fashion. Second,
the analysis includes a treatment of the relativistic correc-
tion to the time delay due to the difference in time scales
in the various coordinate frames. Third, statistical aver-
ages are made by means of ensemble averages rather than
the cross-correlation integral (Ref. 1). The ensemble aver-
age approach explicitly bases the derivation on stationarity
of the radio noise. Fourth, the derivation includes a model
for the electronics which explicitly incorporates the inter-
play between passband and doppler shift. In particular,
the model can lead to the dependence of fringe amplitude
and fringe frequency on doppler shifting in the two pass-
bands. Finally, based on the assumption of nearly identical
systems, it is shown that all sinusoidal time dependence is
relegated to the fast fringes if the effective center fre-
quency is chosen to be the centroid of the doppler-
corrected bandpass product. Even though transmission
media effects are usually important in VLBI measure-
ments, they have been omitted in this report in order to
concentrate on the cross-correlation procedure.

The report includes four major sections. In Section II,
the time delay for a point source is derived by means of
the plane wave phase. The resultant delay equation is
developed in order to sketch the contributions of polar
motion, aberration, precession, nutation, and diurnal rota-
tion. In Section III, the cross-correlation function is
derived for a natural point source. In Section IV, the cross-
correlation function is derived for a completely incoherent
extended source. In Section V, VLBI measurement uncer-
tainty is briefly discussed.

. Geometric Time Delay for a Point Source

Typical extragalactic radio sources emit noise waves
with a wide frequency distribution. Consider one member
of an ensemble of noise waves that could be transmitted
by an extragalactic point source. The wave may be repre-
sented as a superposition of plane waves in the form

E(x,t)=/_°°A(w)exp it —kx)]do (1)

o0

where E is the electric field at time ¢ and point x, k is the
apparent wave vector of the plane wave and gives the
apparent direction of propagation, and A (a,)\) is the Fourier
amplitude at frequency o. As usual, k = ok/c. All quanti-
ties are measured with respect to a “quasi-Lorentzian”
geocentric (QLG) frame, such as true equatorial coordi-
nates of date. The term “apparent wave vector” refers to
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the annual aberration effect that will be observed in a
QLG frame and will be discussed below. For simplicity,
the wave is assumed to be polarized. We will also assume
in this derivation that the wave propagates in a vacuum
and will not include transmission media effects.

Relative to the QLG frame, the electric fields at the two
stations become

E,(t) = E (%, (£),£) = /”A(a,) exp [i (ut — k%, (£))] do
2)

E. () = E (x: (t),£) = / A (o) exp [i (of — ko, (£))] do
)
where x, (¢) and x, (t) give the locations of the two stations

as a function of time in QLG coordinates as indicated in
Fig. 1.

Let a particular segment of the wave reach station 1 at
time ¢,. This segment will reach station 2 at time ¢, when
the following phase equality is satisfied.

kex; () — oty = k%, (£2) — ot, (4)

Let t, = ¢, + r, where 7, is the time delay measured by
observers in the QLG frame. Since 7, will be small
(£0.02 sec for Earth-based antennas), expand about ¢,
to obtain

Xz (£:) = %, (£1) + V2 (1) 75 (5)

Then one obtains from Eq. (4)

§-12(t1> [

1+ (6)

() = — c

Sev, (tl):l‘l

N
where § is a unit vector in the apparent direction of the
source given by
-k

S=mq )

B is the baseline vector given by

B (t)) = x; (t,) — x: (t:) (8)
As one would expect, the time delay is simply the instan-
taneous path difference divided by the speed of light with

a small correction for the motion of station 2 during the
wave transit.
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The content of the time delay function will now be
outlined in order to illustrate the presence of factors such
as precession, nutation, aberration, polar motion and
diurnal rotation. The time delay expression in Eq. (6) is
most conveniently evaluated in terms of true equatorial
coordinates of date. In this coordinate frame, the z-axis is
aligned with the instantaneous spin axis of the Earth, and
the x-axis is given by the true equinox of date. The ap-
parent source direction S and the baseline vector B (t)
may be expressed in terms of this coordinate system in the
following manner.

Source positions are typically recorded in terms of right
ascension and declination relative to the mean equator
and equinox of 1950.0 and must be transformed to coordi-
nates of date. In addition, these recorded source positions
refer to the position that would be seen by an inertial
observer. Since the source direction contained in the time
delay expression is referenced to a geocentric frame, the
inertial source position must be adjusted for aberration
(Ref. 6) due to the Earth’s orbital motion. We will calcu-
late annual aberration in the 1950 frame and then trans-
form to true equatorial coordinates of date.

Suppose §50 denotes the inertial source direction in 1950
coordinates and is given by

/S\so = (cos 8, COS s, COS &, sin as, sin &) 9

where 8, @, are the right ascension and declination rela-
tive to the mean equator and equinox of 1950.0. Let v;,
denote the Earth’s orbital velocity at the time of interest
relative to the 1950 frame. If we neglect terms of the order
9\f v?/c? =~ 102, the aberration-corrected source direction
S, in 1950 coordinates is given by (Ref. 6):

S, =S,/8 (10)
where

SI = /S\50 + V5Q/C

We must now transform /S\c to true equatorial coordinates
of date. If R,, represents the rotation matrix that pre-
cesses and nutates a vector from the 1950 frame to true
equatorial coordinates of date, then the desired apparent
source direction § is given by

S=R,.S. (11)

The exact form of the matrix R,, may be obtained from
Ref. 7.
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A calculation of the baseline vector B (t) in terms of true
equatorial coordinates of date must include diurnal rota-
tion and the motion of the Earth’s instantaneous spin axis
relative to the crust of the Earth (polar motion). Suppose
an Earth-fixed baseline vector B,; is given in terms of
an Earth-fixed coordinate system for which the z’-axis
is the mean pole of 1903.0, the x’-axis is along the 1903
Greenwich meridian, and the y’-axis is 90°E. Then the
baseline at time ¢ is given by

B(t) = R.R,B; (12)
The matrix (Ref. 4)
1 0 —-X/a
R, = 0 1 Y/a (13)

X/a —Y/a 1

accounts for small rotations due to polar motion and
rotates the Earth’s crust to its proper orientation relative
to the true pole of date as indicated in Fig. 2. X and Y are
the coordinates of the instantaneous spin axis relative to
the mean pole of 1903.0 and a is the polar radius. Posi-
tive X refers to positive displacement along the 1903.0
Greenwich meridian while positive Y refers to positive
displacement toward 270°E. The matrix

cosag(t) —sineg(t) 0O
R, =] sinag(t) cosag(t) O (14)
0 0 1

accounts for the Earth’s spin and rotates the baseline
vector to its instantaneous orientation relative to true
equatorial coordinates of date. The angle ag will be called
the right ascension of Greenwich and will be defined in
the following manner. An Earth-fixed 1903 Greenwich
meridian is defined by Greenwich and the mean pole of
1903.0. The point at which this Earth-fixed meridian
crosses the true equator of date is invariant under small
rotations of the Earth’s crust about the x’ and y’ axes due
to polar motion. This fact is illustrated in Fig. 2. There-
fore, if the right ascension of Greenwich ag is defined to
be the right ascension of this crossing point relative to true
equatorial coordinates of date, the polar motion param-
eters (X,Y), and e« are uncoupled independent rotation
parameters when the corresponding rotations are applied
in the order indicated in Eq. (12).

Thus the time delay contains information concerning
the source location, polar motion, precession and nutation,
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UT1, and the baseline vector. A discussion of the sensi-
tivity of the time delay and delay rate to all of these fac-
tors has been presented in previous work (Ref. 4).

Up to this point, the analysis has been performed in
a QLG frame. In order to determine the time delay
observed in antenna frames, observation times must be
transformed to the rotating Earth-fixed antenna frames.
Denote the time scales for antenna frames 1 and 2 by ¢
and #” respectively. Since these antenna times are essen-
tially the proper times of their respective frames, the time
transformation between antenna frame and QLG frame is
given by N

t,= Ylt:)l

where

7= (1 —oi/c?) ™% (15)

for event « at antenna 1 and

tB =, tg
where
y: = (1 — v/c?) % (16)

for event B at antenna 2. The antenna speeds are given by
v; = |%;|. We have assumed that all the clocks have been
synchronized so that the time transformations are homo-
geneous. The effect of these transformations is to com-
press in time the waveform observed in the antenna
frames compared to that predicted by observers in the
geocentric frame.

Let ¢, be the arrival time of a marked wave segment as
seen in the frame of antenna 1 and let ¢/ be its arrival
time in the frame of antenna 2. As defined previously, let
t, and t, represent the corresponding arrival times at
antennas 1 and 2 as observed in the QLG frame. Accord-
ing to the time transformations given above, these arrival
times are related by the expressions ¢, =y, #; and ¢, =
7:%;. When the antenna teams compare arrival times, they
will find the time delay is given by

t t —
tfzf_t/lz___?__l:f!._,_ﬁ_yiﬁ amn
Y2 Y1 Y2 Yz
where, by definition, the QLG time delay is given by
7y = t; — t,. Thus, the transformation to the Earth-fixed
frames introduces a time-delay contraction factor y, and

a linear drift
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Y17 Y2
Yz

t

Since present VLBI time-delay measurement uncer-
tainty is no better than one part in 10%, a time-delay con-
traction of a part in 10" (forv/c = 10-%) is not presently
observable.

With regard to the linear drift, the difference, y, — ¥z
can be of the order of 102 if the two antennas are at
considerably different latitudes. In experiments with
time calibration and stability considerably better than
AT/T = 10-** (possibly an H-maser system with AT/T =
10-*4), this drift would be observed as a gradual linear loss
of synchronization if the time delay measurement uncer-
tainty were sufficiently small. With a 2 MH, recording
system, the time delay could be measured with a precision
of about 10 nsec (see Section V). With this precision, a
relativistic synchronization drift of one part in 10-'2 would
be observable within several hours if the time systems
possessed stability and calibration considerably better
than AT/T = 102,

Note that the time derivative of the observed delay
exhibits an additive factor, (y, — v,)/y., relative to the
uncorrected delay rate, 7,. At S-band, this additive factor
can produce a constant offset of the order of 1 mHz in
the observed fringe frequency (see Section III). This fre-
quency offset would normally be concealed in the uncali-
brated offset between the mixing frequencies at the two
stations.

For simplicity, these small relativistic effects will be
omitted in the analysis of the cross-correlation procedure
that follows in the next section. In that analysis, no distinc-
tion will be made between antenna times and QLG time.
However, the inclusion of these effects is a straightfor-
ward extension of the analysis and results in the corrected
time-delay derived above.

lll. Cross-Correlation for a Point Source

In the cross-correlation procedure, the radio signals
recorded at the two antennas are offset by a model time
delay and multiplied together. In this section, an expres-
sion for the average value of this voltage product is de-
rived for a natural point source.

As indicated in the last section, we may assume that,
for an extragalactic point source, the electric field detected
at the receiver of station j is given by
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E; () =[°A(m) exp(ifot — kox;(®)])do + cc.  (18)

where c.c. denotes complex conjugate. After being hetero-
dyned and filtered, the recorded voltage at station  will
have the form

Vi) = / " A(0) G (g5) exp (ig) do + o+ n; () (19)

Pal

yi =o(l—k-x;/c)

Ui = (0 — o)t — ke x; — or; + ¢;

and G; is the effective bandpass filter, o; is the effective
mixing frequency, ¢; is an electronic phase shift, -, is the
electronic time delay and 7, (¢) is instrumental noise and
background radio noise.

The effective bandpass function G, (Q) is a complex
transfer function that includes all of the phase shifts and
amplitude modulation experienced by the frequency com-
ponent ¢*%* in its trip down the heterodyne-filter chain to
baseband. With no loss in generality, the whole process
may be analytically and conceptually replaced by one
filter at RF followed by one effective heterodyne process
(w;) to baseband provided that all amplitude and phase
effects are included in the effective filter. The term, k » \Z
in the argument of the filter accounts for doppler shift-
ing. That is, the “inertial” frequency component  will be
received at frequency o (1 — & +v;/c) and will be modu-
lated in the heterodyne-filter chain on the basis of this
initial doppler-shifted frequency.

A model time delay is given to good approximation by
the expression

m=SB{t) + r, (20)

where 7. is an adjustable factor to account for clock errors
and instrumental delays. The apparent source direction S
and baseline B are calculated on the basis of the best
values for UT1, station locations and source location. The
apparent source position should include, at least approxi-
mately, the precession, nutation and aberration effects
described in the last section. Except for ., a model time
delay constructed in this fashion is typically accurate to
about one part in 10° or 10¢.
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Once a model time delay has been calculated, the volt-
age signals may be offset and multiplied together as
follows

Vi) Vot + 1) =

/0 ) / " Af0) A () Gy () G (4) €% doo do” + cc.

+ / ) / " A(6) A(W) Ga () Ga (4) €% duvdo” + cc.
+ noise terms (21)

where
=0l —k-%,/c)
o = o (1 —kk,/c)

Y= k’B,(t) +(w—w')t+ (a)z —wl)t—mn + 0’1y
— (m' — mz) ™m+ ¢ (22)

for which

B, (t)=x. (t + m) — X, (t) = retarded baseline

P=¢1— ¢

and ¢ is a similar expression that, as we will see, will not
be needed. By expanding about t and using Eq. (6), one
can easily show that

7
Sev,

ke [ (¢ + ) — %, (£)] z[ 42V w] (23)

Since v,/c is of the order of 10-¢, and since r, typically

differs from r, by only one part in 105, the second term
may be neglected. Thus, to very good approximation,

kB, (t) = wr, (24)
and
Y =orgF (0~ o)t + (02 — 1)t — o1y + o'rs
~(0— o) tm + ¢ (25)

Since the exact forms of the radio signal and additive
noise recorded in a particular experiment are not known,
a statistical average of the voltage product is in order.
An ensemble average of the voltage product will reveal
long-term variations (>> bandwidth*) due to factors
such as the time delay, since it statistically removes short-
term fluctuations (= bandwidth-!) due to both signal and
noise. Furthermore, an ensemble approach provides a
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formalism that sets the stage for analysis of subsequent
data reduction (fringe stopping, Fourier analysis, etc.).

An average over the ensemble of all possible noise waves
leads to the form

Vi) Vot + ) =

f /<A<w A* (o)) G: () G () e¥ dodo’ + coc.

AAEE

where the brackets ( ) denote an ensemble average. Be-
cause the instrumental noise is uncorrelated between
stations and uncorrelated with radio noise, the instru-
mental noise terms have zero expected value. It has been
assumed that background radio noise is also uncorrelated.

> G1 (yl) G2 (yz) e“P dll) d(.l)’ + c.C.
(26)

In order to obtain the ensemble average of the fre-
quency components, one must assess the statistical prop-
erties of the radio noise. The frequency spectrum of a
particular member of the noise ensemble is obtained by
Fourier analysis of the electric field, E, (£), measured at a
fixed point in QLG coordinates.

o= / : E, (t) iot dt (27)

For simplicity, the following derivation neglects the con-
vergence problem associated with Fourier transforms of
noise signals of “infinite” extent. Since more rigorous trun-
cation and limit techniques (Ref. 8) do not change the
essence or the result of the derivation, they have been
replaced by a simpler delta function approach. An en-
semble average of the frequency components is given by

(@) =
@},72 f ) / " (E, (8) E, (¢)) exp (iof — io?) dt d¥

(A{w) A"

(28)

If we assume that, according to QLG observers, the radio
noise is stationary (Ref. 1), we have

(E, () E, (V)

where R is the autocorrelation function for the radio noise
and 7 =t — ¢ is the standard autocorrelation delay and
has no relation to the geometric time delay obtained
earlier.

=R(@E—t)=R(s) (29)
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Hence, we obtain by change of variable

1
RCER

< [Toerar

(A (0) A* (o)) = / R (<) ¢"7 dr

= 8p(0) 8 {0 — o) (30)

where S, (o) is the power spectrum (Ref. 8) of the radio
noise and § (v — ") is the Dirac delta function. Since

A"(o) = A(—

«’), we obtain

(A(0) Ao)) = 55 (0) 8 (0 + o) (31)

Thus different frequency components of stationary radio
noise are uncorrelated (Ref. 8).

The average voltage product, which will be called the
cross-correlation function, becomes

(t + m)
- (1)1) t + i(l.)sz + i¢]

= (V. () V,
= exp [i (v,

% [5G0 G e do + e (@)

where
Ar=1,+ 10—
Te — T2 — T1
The A (0) A (o’) term has dropped out since o = —o’ is not

covered in the region of integration. The derivation of this
expression for the cross-correlation function requires only
one assumption regarding the statistics of radio noise—the
assumption of stationarity.

We may use the identity e-i27 gi*A™ = ] to rewrite the
cross-correlation function in the form

1, = F (£) D (A7) + c.c. (33)

where

F(t) = exp [i (w2 — w1) T + fworm T fwodr + id] (34)

D (ar) = / " 8,(0) G (1) G () @b d (35)
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The frequency, w,, is nominally the “center” of the band-
pass product. We will call the function, D (A7), the time
delay function and the function, F (), fast fringes.

The center frequency, o,, may now be selected to mini-
mize the time dependence of the time delay function so

that it makes a negligible contribution to the frequency of

the cross-correlation function. That is, the fast fringe func-
tion will contain all the sinusoidal time dependence while
the time delay function will be a slowly varying ampli-
tude. Since sinusoidal dependence in the time delay func-
tion arises from the exp [i (o — w,) A7] factor, the following
analysis will be dédicated to removing the sinusoidal im-
pact of this factor.

The transfer function product may be written in the
form

G, Gt =|Gi |Gl exp[i(6: — 6.)] = |G| |Ga '
(36)

where 6, and 6, represent the aggregate phase shifts of
the two systems and A8 = 6, — §,. The constant part of
Af can be included in ¢. The part of Af that is linear in
frequency is equivalent to an electronic delay and can be
included in 7. The remaining nonlinear part of A9 will be
negligibly small if the filters are nearly ideal and /or nearly
identical.

If we assume the time delay error, Az, is small (as we
shall see, we can do this by maximizing the time delay
function), we may write

Dz/wS,,IG1| Ga|[1 +i(o— o) Arlde  (37)

A weak time dependence is found in the amplitudes |G, |
and |G.| due to doppler shifting of their arguments,
which have been omitted for simplicity. Since amplitude
variations in the time delay function are acceptable, we
may neglect the time dependence in |G, | and |G.|.

Under these conditions, we may minimize the sinusoidal

content of the time delay function by requiring the second
term of Eq. (37) to be zero so that

_/s,,|G1(y1)| |G: (y2)| @ do
° [8:1Gs ()] |G (w2 | do

(38)

Thus, for nearly identical transfer functions and a flat
power spectrum, the center frequency is the centroid of
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the doppler-corrected bandpass product. Under the stated
conditions, this choice for w, will reduce the time delay
function to a slowly varying amplitude for time delay
errors, Ar, that are small compared to the reciprocal

bandwidth.

In order to illustrate the essential features of the cross-
correlation function, assume both stations have the same
effective square bandpass of width W. Also, suppose the
systems are configured in the double sideband mode so
that bandpass f is effectively centered at mixing frequency
o; when there is no doppler shift. When there is a doppler
shift D;, bandpass j will be effectively centered at w; — D;.
If we assume the power spectrum is flat within the band-
pass, we then have for W/, << 1

S5 (o) G1 G = constant = K for |o — wo| < 7 Wp
=0 for |0 —w| >7Wp (39)

where the centroid o, is given by

30_~f1+f2_D1+D2
2r T 2 2 (40)
and the effective product bandwidth W, by
p=W— lfz i+ D1’_D2|
fOI'W> lfz - fl + Dl - Dzl
= 0 otherwise (41)

where

fi = wi/27r

Note that the effective bandwidth W, decreases if the
mixing frequencies have not been chosen to compensate
for the doppler difference. Also note that the effective
receiving frequency o, is a function of doppler shift.

Under these bandpass assumptions, the cross-correlation
function is given by

sin [ Wp A7]

(Vi(®) Vet + 7)) = 4n KW - ~Woar  COS%r (t)
(42)
where
¢r(t) = (02— 01) t + 027m + 0o Ar +
and

Ar =1+ 7, — 7,
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Thus, the cross-correlation function consists of a sinus-
oidal factor, fast fringes, multipled by a sin (x)/x factor,
the delay function. The width of the delay function is
equal to the reciprocal bandwidth 1/W),. The frequency
associated with the sinusoidal factor depends on the
mixing frequency difference, v, — ;. Generally, this dif-
ference is chosen to approximately cancel the fringe rate
term o, 7, which is about 5000 Hz for intercontinental
baselines. It is readily shown that this choice of w; — v,
also compensates for doppler shifting and aligns the two
passbands.

In general, both the fast fringes and the delay function
will yield information concerning the geometric delay 7,.
The magnitude of the delay function is determined by the
accuracy of the model delay r,, and peaks for zero delay
error (Ar = 0). Therefore, by maximizing the amplitude
of the cross-correlation function, one can determine the
geometric delay. Once the delay function has been opti-
mized by selection of an accurate model delay, the fast
fringes may be analyzed. Because of the 2nr ambiguity
involved in the inversion of sinusoidal functions, the
fringe phase ¢, may only be determined to within an addi-
tive constant. In effect, this means that only the time
derivative of the geometric delay may be obtained from
the fast fringes for one passband. Thus, the delay function
can lead to a measurement of the geometric delay while
the fringe phase can yield a measurement of the time
derivative of the geometric delay.

IV. Cross-Correlation for an Extended Source

In this section, the cross-correlation function is derived
for an extended natural source that is completely in-

coherent. The assumptions, definitions and derivation
parallel the point-source case in Section III.

The radio noise generated by a very distant extended
natural source may be expressed as a superposition of
plane waves in the form

E(xt) =

ﬁ /MA(/E, o) exp [fo (t — 7c\-x/c)] dodQ + c.c. (43)

where E (x,t) is the electric field at point x and time t.
A (k, ») is the Fourier amplitude at frequency o for the
wave received from direction k. As in Section II , all quan-
tities are measured with respect to a quasi-inertial geo-
centric frame. The wave direction k must be expressed as
a function of two parameters. If kis expressed in terms of
right ascension and declination, it is given by

E= —{cos 8 cos &, cos § sin a, sin §) (44)

where «, § are the apparent right ascension and declina-
tion relative to true equatorial coordinates of date (see
Section II). The quantity dQ represents a differential solid
angle such as cos 8 de d$ in the case of right ascension and
declination. The term k in the argument of the Fourier
amplitude stands for the two direction parameters.

The electric field detected at antenna f is given by

E;(t) = E{(x;(t),t) =A /;wA (/k\',,u)) exp (o [t — 7c\°x,- (t)/c]) dodQ + c.c. (45)

The voltage signal recorded at antenna j is given by the expression (see Section ITI)

\7103] =/i;\‘/o‘wA(7;,m) G; (y,) exp [ (wt — ojt ""a)/’; *x; (t)/¢c — or; + 4),)] deodQ + c.c. + n; (£) (46)

where
~ -
yi =w(l —k-x;/c)
and G; is the effective band pass filter, o; is the effective mixing frequency, ; is the electronic delay, ¢; is the elec-
tronic phase shift and »; is additive noise. We have assumed that the antenna pattern is large compared to the source size

and may therefore be neglected. In the cross-correlation procedure, the signals from two antennas are offset by a model
time delay 7, and multiplied together giving
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Pv—Vl( V2 t+Tm)

SYNSES

o) Gy () G2 () € do d do’ d0

+ ﬁ /w /\‘ /°° A @, w) A(/IE', o) Gy (1) Ge (y;) oo do dQ do’ A0’
k' Jo k 0

=+ c.c. + noise terms

where
g = o(l — k*x:/c)
v = o (1 — K +1,/0)

¥ = (o

T wTy + 0),7'2 + (v¢1 -

and ¢, is a similar expression that will not be needed.

An ensemble average gives

t+ 1))

L o
SR

Since the instrumental noise is uncorrelated between sta-
tions and is uncorrelated with the radio noise, all instru-
mental noise terms have averaged to zero.

We will assume that the natural source is completely
incoherent (Ref. 1) which means
ray e Ay N A
(Alk,0) A* (K, o)) = Sp(k,0) 8 (k — k') 8 (0 — o) (49)
where S, (/12, ) is the power spectrum for direction k and
8 (z) represents a Dirac delta function.* That is, noise
waves emitted by different areas of the source are uncor-
related. Furthermore, the noise emitted by a given area of
the source is stationary and therefore possesses uncor-
related frequency components (see Section III). Since

ARo) = A*(k —o)

For two particular direction parameters (8, y) the delta function
(k — k) denotes 8 (8 — B’) 6 (y — ¥'). Furthermore, we will re-
quire 8 and vy to satisfy the relation dgdy = dQ.
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— )t o R exy (8 mm)/e — ok e x (8)/c

(47)
+ (wg — wl)t — (m" — a)z) Tm
o) G, G e du da do’ d0’
o)) Gy Gy ¥ dodo do’ d0’ + c.c. 48)

the last equation implies

PaN

Ak )AR, )y =S, (ko)sk—F)s(+o) (50)

Under these assumptions, we obtain
V.(®) V.

/;/ws,, (ic\, 0)G: (Y1) Gi{y,) expiy;dedQ + cc.  (51)
£ Jo

(t + 'Tm)> =

where
Y1 = o(l~— 75-5(1/0)
ic\'fcz/c)
Y=ok B,/c+ ot + ¢ + (0 —

ygz(ﬂ(l'_

ml) t— '(a) - 11)2) Tm

The retarded baseline B, and the instrumental terms,
¢ and 7., have been defined in earlier sections. The
A(/l;, ) A(/k\f’, «’) term has dropped out since » =
not covered in the region of integration.

—o is
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Let two particular parameters 8,y define the direction
vector. Suppose the brightness distribution is very nar-
row about some central direction k, given by

ko = K (Ba va) (52)

If the brightness distribution is sufficiently narrow, we
may approximate the wave direction by

k k
Bkt fg| G-p0+5 ] 0w 69

a

where the partials are evaluated at the point B,, v, We
then obtain

r, = (Vl <t) V. (t + Tm)> =

/ "R (1,0,0) Gy (7)) G2 (3) exp (ida) do + 0. (54)

o= Jc‘a-B,/c+w78+¢+(w

2_'&)1)t_((1)_(02)7m

In addition,

R(U,U,a))E /w /msp(ﬂ’ya"”)

X exp{2ri [u (8 — Ba) +v(y — va)]}dﬁ dy

(55)
where
ok
u_ﬁ . B,—/)\
DE% *B,/A
a’Y e
A= 2nc/w

We have assumed that 8 and y have been defined so that
dpdy is a differential solid angle Two approximations
have been made in Eq. (54) and (55). First, the weak k
dependence in the bandpass functions has been neglected
so that the y,, y, values have been evaluated at k,.

Second, the limits of the (B,y) integration have been
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extended to infinity under the assumption that the bright-
ness distribution is very narrow and terminates the inte-
gration. We will call R (u,0,») the brightness transform.

If we define the geometric delay for the extended
source by the expression

_ kB, _k-B() [1 _ ka-zz.(t)]-l 56)

c 7 ¢

then the cross-correlation function for an extended source,
Eq. (54), becomes

Ty = exp [i(w; — 1)t + fwy T + ip]

X / RG, G} exp (iwA7) do + c.c. (57)
0

where

Ar=r1,+ 7, —

Note that the cross-correlation function for an extended
source, Eq. (57), is identical to the point-source expression,
Eq. (32), except that the power spectrum S, (») is replaced
by R, the Fourier transform of the brightness distribution.
For this reason, remarks concerning the cross-correlation
function for a point source are valid for an extended
source with the understanding that the fringe amplitude
includes the brightness transform. Furthermore, the time
delay for an extended source, Eq. (56), is the same as the
point source expression, Eq. (6), except that the source
location is taken as the effective center of the brightness
distribution.

The visibility function (Ref. 1) is a normalized bright-
ness transform and is defined by

T (u,0,0) = R (58)

With this definition, the visibility function for a point
source would be unity for all baselines. For a diffuse
source, the visibility function would equal one for a “null”
baseline and would decrease as the baseline length in-
creased. For a symmetrical source, this decrease can be
substantial for baselines satisfying

B2 3 (59)

where d, is the source diameter in radians and A is the
radio wavelength.
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In most VLBI work, the direction parameters, g and v,
are defined in terms of right ascension « and declination 8
(relative to true equatorial coordinates of date) as follows.

B = acosd,
y=238 (60)
so that
dQ = dBdy = cos 8, dad}
where §, is the apparent declination of the center of the
source relative to true equatorial coordinates of date. Note
that dBdy represents a differential solid angle for this

choice of B and y provided the ranges of « and § are very
small. With these definitions and Eq. (44), we obtain

ok 1 ok .
5E alweralwl B (5in ag, —cOS ag, 0)
a a a
g—k = g—{; = (sin §, COS g, Sin 8, Sin a,, —cOs 8,)
Y @ a
(61)
so that

u = (B, sina, — B, cos a;)/A

v = (B, sin 8, cos o, + By sin 8, sin o, — B, cos §,)/A
(62)
where B,, B,, and B, are the instantaneous components of
the baseline vector relative to true equatorial coordinates
of date. We have replaced the retarded baseline with the
instantaneous baseline and will neglect the small transit-

time correction. The x-y components may be expressed
in the form

B, = B, cos [Ag + ag(t)]

B, = B, sin [\s + as (£)] (63)

where B,, Ap are the equatorial projection and longitude
of the baseline and «g is the right ascension of Greenwich
at time t. We then obtain, as in Ref. 1,

u = —‘;\isin()\g +aG— aa)
Be . z
v =-—sin8,cos (As + ag — a;) — — cos §, (64)

A A
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Note that

po + x =1 (65)
where
_B.
2=
. B,
b = sin$, Y
0y = -—COS Sa—f

The last equation indicates that the Earth’s rotational
motion produces an elliptical path in the u-v plane (Ref. 1).
Some typical paths are illustrated in Fig. 3. Note that the
sense is clockwise for negative declination and counter-
clockwise for positive declination. Since right ascension is
not defined for 3, = +=/2, the o, 8 representation is de-
generate at the poles. As illustrated in Fig. 3, the u-v
path becomes a point for zero equatorial projection and
a straight line parallel to the u-axis for zero declination
sources. In practice, one sometimes finds that only a por-
tion of the u-v path satisfies the condition of mutal visi-
bility. A typical visibility region has been emphasized with
cross-strokes in Fig. 3a.

The measurement of the brightness transform is assisted
by the relation

T(—u, —0,0) = T* (4, , 0) (66)

That is, once the brightness transform has been deter-
mined for point (u, v), its complex conjugate will give the
transform for point (—u, —v).

If a sufficiently diverse set of baselines were available,
the brightness transform could, in principle, be measured
for enough points on the u-v plane to invert the trans-
form and thereby obtain the brightness distribution for a
given source. However, because of the limited distribution
and availability of radio antennas for VLBI measurements
and the substantial problems involved in the experimental
determination of the phase of the brightness transform, the
unique measurement of a brightness distribution is a dif-
ficult task. Therefore, distribution calculations must gener-
ally be based on incomplete data and simple models.
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V. Measurement Uncertainty

This section presents a brief discussion of VLBI mea-
surement uncertainty for delay and delay rate. The dis-
cussion, which relies on description and intuition rather
than rigor, outlines the variables and limitations inherent
to the VLBI cross-correlation procedure presented in
Sections II and III.

The accuracy with which the delay function and the
fringe phase may be exploited depends on bandwidth,
integration time, antenna factors (site, efficiency, system
temperature), source strength, transmission media cali-
bration error, and time-frequency system stability. By inte-
gration time, we mean the time span over which the
cross-correlation is performed in order to obtain one delay
or delay rate measurement. The following discussion will
specify the dependence of measurement precision on inte-
gration time T, bandwidth W, and source strength S. In
addition, estimates of time-frequency errors will be given
for an H-maser system. The antenna variables (size, effi-
ciency, temperature) will implicitly refer to DSN antenna
systems. Transmission media calibration errors will not be
discussed, although, in practice, they are a significant
source of error.

With regard to the time delay function, the precision
with which the time delay may be measured is determined
by the width of the time delay function and the signal-to-
noise ratio. The signal-to-noise ratio increases as SY WT
while the width of the time delay curve decreases as W,
Thus the time delay precision is proportional to

or o W-3/2 T1/2 81

For typical long baseline source strengths (1fu.)?, the
time delay can be measured with a precision of about
10 psec with a 24 kHz bandwidth, a 700-sec integration
time, and DSN antenna systems. Since this uncertainty
corresponds to about a 3-km baseline change (Ref. 4), no
useful geophysical information can be gained from the
time delay function with this narrow-band system. There-
fore, with narrow-band recording, the time delay function
is regarded as an amplitude that must be maximized in
order to determine the source strength and to expose the
fast fringes. For a 2-MHz bandwidth with the other con-
ditions listed above, the time delay could be measured
with roughly 10 nsec (3 m) precision. These estimates of
precision refer only to the uncertainty due to system noise
and do not include timing system or transmission media

20ne flux unit (f.u.) equals 10-26 W/m2-Hz.
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uncertainties. With an H-maser system (AT/T = 10-4),
the clock drift over a day would be about 1 nsec.

With regard to fast fringes, we can, in effect, only ex-
tract the time derivative of the time delay or, equivalently,
the fringe frequency which is defined by

dfg

Vp :mOE'

For S-band observations with a 24-kHz bandwidth, DSN
antenna systems, a 700-sec integration time, and typical
long baseline source strengths (1 f.u.) the fringe frequency
may be measured with a precision of about 0.3 mHz. This
uncertainty corresponds to about a 0.5-m baseline change
(Ref. 4). Since the signal to noise ratio improves as SV WT
and the frequency uncertainty decreases as 1 /T for Fourier
transform techniques, the fringe frequency precision is
proportional to

oy o« W-1/2 T-3/2 G4

For a 2-MHz bandwidth with the other conditions listed
above, the fringe frequency could be measured with a
precision of about 25 uHz (5 cm). These fringe frequency
precision estimates include only the uncertainty due to
system noise and do not include transmission media uncer-
tainty or frequency system instability. For a hydrogen
maser frequency system, the frequency instability is equal
to roughly 30 xHz at S-band over many hours.

VL. Summary

The VLBI cross-correlation procedure has been ana-
lyzed on the basis of plane waves generated by both a
natural point source and a completely incoherent extended
source. The geometric time delay for a point source has
been derived on the basis of plane wave phase and ex-
pressed in terms of polar motion, aberration, precession,
nutation, and diurnal rotation relative to true equatorial
coordinates of date. The cross-correlation analysis includes
electronic factors such as the system transfer functions and
the heterodyne process. The resulting cross-correlation
function is a product of an amplitude factor, the delay
function, and a sinusoidal factor, the fast fringes. The
cross-correlation function for a completely incoherent
extended source is identical to the point source expression
if the point source spectral power is replaced by the
brightness transform for the extended source.
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